[Time: 3 Hours]

[Marks:80]

(3)

Please check whether you have got the right question paper.

- N.B: 1. Question 1 is compulsory.
 - 2. Attempt any three questions from Q.2 to Q.6.

Q1 (a) Prove
$$\cosh^5 x = \cosh 5x + 5 \cosh 3x + 10 \cosh x$$

(b) If
$$u = \log(\tan x + \tan y)$$
 (3)
Prove $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} = 2$

(c) If
$$u = \frac{yz}{x}$$
, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ Show that $\frac{\partial (u,v,w)}{\partial (x,y,z)} = 4$

(d) Express the following matrix as sum of symmetric and skew symmetric (3) matrix.

$$A = \begin{pmatrix} 2 & 2+i & 3 \\ -2+i & 0 & 4i \\ -i & 3-i & 1-i \end{pmatrix}$$

(e) Show that
$$\log(1 + \sin x) = x - \frac{x^2}{2} + \frac{x^3}{6}$$
 (4)

(f) If
$$y = \frac{x^2}{(x-1)(x-2)}$$
 Find y_n (4)

Q2 (a) Solve the Equation
$$x^4 - x^3 + x^2 - x + 1 = 0$$
 (6)

(b) Reduce the following Matrix to the Normal form and hence find the rank of the matrix (6)

$$A = \begin{pmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{pmatrix}$$

(c) If
$$\mathbf{u} = \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2} + \cos^{-1} \left(\frac{xy + yz}{\sqrt{x^2 + y^2 + z^2}} \right)$$
 (8)

Find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$

53399

Page 1 of 2

Paper / Subject Code: 58501 / Applied Mathematics - I.

- Q3 (a) Investigate for what values of λ and μ the system of equations x+2y+3z=4, x+3y+4z=5, $x+3y+\lambda z=\mu$. have 1) unique solution, 2) Infinite solutions, 3) No solution
 - (b) Find the Extreme values of $f(x,y) = xy + a^3(\frac{1}{x} + \frac{1}{y})$ (6)
 - (c) Separate into real and imaginary parts of $tan^{-1}(e^{i\theta})$ (8)
- Q4 (a) If $u^2 + xv^2 = x + y$, $v^2 + yu^2 = x y$ Find $\frac{\partial u}{\partial x} \frac{\partial v}{\partial y}$ (6)
 - (b) If $\log \cos(x+iy) = a+ib$ Prove $2e^{2a} = \cosh 2y + \cos 2x$ (6)
 - (c) Solve the following Equations by Gauss Seidel method Upto four iterations. 4x-2y-z=40, x-6y+2z=-28, x-2y+12z=-86
- Q5 (a) Using De Moivre's theorem Prove $\cos^7 \theta = \frac{1}{2^6} (\cos 7\theta + 7 \cos 5\theta + 21 \cos 3\theta + 35 \cos \theta)$ (6)
 - (b) Evaluate $\lim_{x \to 0} \left(\frac{1}{x^2} \cot^2 x \right)$ (6)
 - (c) If $y = \sin(m \sin^{-1} x)$ Prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$ And hence findy₃(0).
- Q6 (a) (a) Show the following vectors are linearly dependent and find the relation between them. [2,-1,3,2], [1,3,4,2], [3,-5,2,2].
 - (b) If z=f(x,y) where $x = u \cosh v$, $y = u \sinh v$ Prove $(\frac{\partial z}{\partial x})^2 (\frac{\partial z}{\partial y})^2 = (\frac{\partial z}{\partial u})^2 \frac{1}{u^2} (\frac{\partial z}{\partial v})^2$ (6)
 - (c) Fit the curve of the form $y=ab^x$ to the following data. (8)

X	2	3	4	5	6
V	144	172.8	207.4	248.8	298.5

NB

1) Question No. 1 is compulsory.

- 2) Answer any three questions out of remaining five questions.
- 3) Assumption made should be clearly stated.
- 4) Answer to questions should be grouped together and written together.

Q1 a. Find RAB

3

b. Find the Norton's equivalent across AB.

3

- e. A pure inductor of 0.2 H is connected across single phse 200 V, 50 Hz 3 supply. Write the instantaneous equation of voltage and current.
- d. Write any four conditions of series resonance.
- 3
- e. What is the phase line relation in star connected system?
- 2
- Explain the working of a single phase transformer under load g. Illustrate the working of half wave rectifier.
- 4

6

The impedances (8+6) Ω and (10-j10)Ω are connected in parallel across 8 voltage of 230∠0. Determine current in each branch and kVA, kVAR, kW and power factor of the whole circuit.

[TURN OVER

67344

DEV:

Paper / Subject Code: 58503 / Basic Electrical & Electronics Engineering.

FATHERS

c. Derive emf equation of a single phase transformer

6

7

- Q3 a. Calculate the phase and line currents in a balanced delta connected load 8 taking 75 kW at a power factor of 0.8 lag from a three phase 440 V supply. Also calculate the per phase impedance.
 - b. Illustrate with neat circuit diagram the procedure for conducting open 6 circuit test and short circuit test.
 - c. Illustrate with neat diagram and explain the input characteristics of an 4 NPN transistor in CE configuration.
 - d. Draw the circuit diagram and output voltage waveform of a full wave 2 rectifier with capacitor filter.
- Q4 a. Find current through 8 Ω resistor using source transformation.

- b. Three identical coils each having a resistance of $10~\Omega$ and an inductive reactance of $10~\Omega$ are connected in star across 400 V three phase supply. 4 Find the reading on each of the watt meters connected to measure the power
- c. Define the rms value of an ac quantity.

- 5
- Derive rectification efficiency and ripple factor of a full wave bridge 4 tapped rectifier.
- Q5 a. Determine the current through 8 Ω resistor in the network using 8 Thevenin's theorem 5.5

- b. An rms voltage of $100 \angle 0$ is applied to an impedance $Z = 20 \angle 30$. Find 4 the current through the circuit and power factor of the circuit.
- c. Derive the conditions for maximum efficiency of a single phase 8 transformer.

TURN OVER

Paper / Subject Code: 58503 / Basic Electrical & Electronics Engineering.

7

Q6 a. Find current through 4 Ω resistor using superposition theorem.

2V T 6A 4V 4 42

- b. A series R-L-C circuit with R=10 Ω , L=0.014 H and C=10 μ F is 7 connected across 230V variable frequency supply. Calculate a) resonance frequency b) current at resonance c) Q-factor d) voltage across inductor and capacitor and e) power factor at resonance.
- c. Prove that the power and power factor in a balanced three phase circuit 6 can be calculated from the reading of two watt meters. Draw relevant connections and phasor diagram.